A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
1 #include2 3 #include 4 5 #include 6 7 using namespace std; 8 9 vector adj[10001]; 10 int visit[10001]; 11 int Tree[10001]; 12 int root[10001]; 13 int MM[10001]; 14 int num; 15 int getroot(int x) 16 17 { 18 19 if(Tree[x]==-1) return x; 20 21 else 22 23 { 24 int tem=getroot(Tree[x]); 25 Tree[x]=tem; 26 return tem; 27 } 28 29 } 30 31 32 33 34 35 void DFS(int x,int d) 36 37 { 38 visit[x]=1; 39 int i; 40 for(i=0;i >n) 62 { 63 for(i=1;i<=n;i++)//初始化 64 { 65 Tree[i]=-1; 66 adj[i].clear(); 67 } 68 for(i=0;i >a>>b; 71 adj[a].push_back(b); 72 adj[b].push_back(a); 73 a=getroot(a);//并查集 74 b=getroot(b); 75 if(a!=b) 76 { 77 Tree[a]=b; 78 } 79 } 80 int count=0;//极大连通图个数 81 for(i=1;i<=n;i++) 82 { 83 if(Tree[i]==-1) count++; 84 } 85 if(count!=1) 86 { 87 cout<<"Error: "< <<" components"<